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Abstract

An exact solution procedure is formulated for the buckling analysis of rectangular plates having two opposite edges
(x = 0 and a) simply supported when these edges are subjected to linearly varying normal stresses o = —No[1—o(y/b))/
h, where h is the plate thickness. The other two edges (y = 0 and b) may be clamped, simply supported or free, or they
may be elastically supported. By assuming the transverse displacement (w) to vary as, sin(mmnx/a), the governing partial
differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients, for which
an exact solution is obtained as a power series (i.e., the method of Frobenius). Applying the boundary conditions at
y =0 and b yields the eigenvalue problem of finding the roots of a fourth order characteristic determinant. Care must
be exercised to retain sufficient terms in the power series in calculating accurate buckling loads, as is demonstrated by a
convergence table for all nine possible combinations of unloaded clamped, simply supported or free edges at y = 0 and
b. Buckling loads are presented for all nine possible edge combinations over the range of aspect ratios 0.5 < a/b < 3 for
loading parameters o = 0, 0.5, 1, 1.5, 2, for which « = 2 is a pure in-plane bending moment. Some interesting contour
plots of their mode shapes are presented for a variety of edge conditions and in-plane moment loadings. Because the
nondimensional buckling parameters depend upon the Poisson’s ratio (v) for five of the nine edge combinations, results
are shown for them for the complete range, 0 < v < 0.5 valid for isotropic materials. Comparisons are made with results
available in the published literature.
© 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b plate lengths in x- and y-directions, respectively (cf. Fig. 1)

C,...  arbitrary coefficient in Eq. (10)

C, F, S clamped, free, and simply supported edge indicator, respectively

D flexural rigidity of plate [=ER*/12(1—v?)]

E Young’s modulus

h plate thickness

k plate aspect ratio (=a/b)

m numbers of half-waves in the x-direction of a buckling mode shape
M in-plane moment applied to each of the simply supported ends

M* nondimensional in-plane moment (= M /D = N{/6)

M., critical buckling in-plane moment

M, nondimensional critical buckling in-plane moment (=M.,/D)

M, bending moment per unit distance on y-plane

n non-negative integer in Eq. (10)

N upper limit of the summation in Eq. (10)

Ny intensity of compressive force at y =0

Nocr critical buckling intensity of compressive force at y =0

Ng nondimensional intensity of compressive force at y = 0 (=Nyb*/D)
Nie, nondimensional critical buckling intensity of compressive force at y = 0 (=Noer v2/D)
N,, N, normal forces per unit distance on x- and y-planes, respectively
Ny, shear force per unit distance on x-plane and parallel to y-axis

v, effective shear force per unit distance on y-plane

w transverse plate deflection

X,y rectangular coordinates with origin at plate corner (cf. Fig. 1)
Y., deflection function of #,
"

Y" YV the second and fourth derivatives of Y,, with respect to 1, respectively

o numerical loading factor in Eq. (3) (cf. Fig. 2)

B =mn/kim=1,2,3..))

v Poisson’s ratio

& n nondimensional coordinates for x and y, defined by x/a and y/b, respectively

T 3.141592. ..

Oy, 0y, Oy, In-plane stress components

v? bi-harmonic operator (=0*/0x* + 20%/6x%0y” + 8*/0y* in rectangular coordinates)

1. Introduction

For more than a century researchers in structural mechanics throughout the world have endeavored to
obtain accurate theoretical results for the critical buckling loads of plates, as well as their corresponding
buckling mode shapes. Several thousands of research papers on these topics have appeared in the interna-
tional scientific and technical journals and in conference proceedings, most of them dealing with rectangu-
lar plates. Much of the useful results has been summarized in many texts and handbooks (Timoshenko and
Gere, 1963; Volmir, 1967; Bulson, 1970; Japan Column Research Council, 1971; Szilard, 1974; Brush and

Almroth, 1975; Trahair and Bradford, 1998).
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Fig. 1. An S-F-S-C plate with linearly varying in-plane loads, with coordinate convention.

Rectangular plates subjected to uniform in-plane stresses have been extensively analyzed in the buckling
literature because the governing differential equation of equilibrium has constant coefficients, yielding exact
solutions for buckling loads straightforwardly when two opposite edges of the plates are simply supported.

Of course, a plate may be loaded at two opposite edges by non-uniform, in-plane, axial forces (N,), the
first variation from the uniform loading being one which varies linearly. A special case of this is a pure, in-
plane bending moment. In the non-uniform loading case the analysis is more formidable, and exact solu-
tions are much more difficult to achieve. One finds considerable approximate results for plate buckling
loads for such non-uniform stress fields, typically obtained by energy methods. Recently, for the case of
linearly varying in-plane loadings some researchers have presented approximate results (Smith et al.,
1999a,b; Bradford et al., 2000; Smith et al., 2000). Exact solutions for S-F-S-F (Kang and Leissa, 2001)
and S-C-S-C plates (Leissa and Kang, 2002) have also been obtained, where two opposite edges are simply
supported and the other two are either free (F) or clamped (C).

Some researchers have also analyzed both the buckling and vibration of rectangular plates subjected to
in-plane stress field (Kang and Leissa, 2001; Leissa and Kang, 2002; Bassily and Dickinson, 1972, 1978;
Dickinson, 1978; Kielb and Han, 1980; Kaldas and Dickinson, 1981). Bifurcation buckling may be re-
garded as a special case of the vibration problem; that is, determining the in-plane stresses which cause
vibration frequencies to reduce to zero.

The present work presents exact solutions for the buckling loads and mode shapes for rectangular plates
having two opposite edges simply supported when these edges are subjected to linearly varying in-plane

—IVO —O.SNO 0 0.51\/0 ‘)VO

/
/ /
/ /

—NO —[\/0 —NO —No —1\/0

a =0 a=0.5 o =1 a=1.5 o =2
Fig. 2. Examples of in-plane loading N, along the edge x = 0.
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Table 1
Convergence of nondimensional critical buckling moments M7, of rectangular plates with two opposite edges simply-supported for
alb=2.3, a =2, and v=0.3 by the power series method

N? S-C-S-C S-C-S-S S-C-S-F S-S-S-C S-S-S-S S-S-S-F S-F-S-C S-F-S-S S-F-S-F
(m=Y5) (m=Y5) (m=Y5) (m=4) (m=23) (m=23) m=1) (m=1) (m=1)

5 b - - - - - 1.615 0.5771 0.2498
7 16.02 - - - 6.543 - 3.017 1.312 0.6253
9 3.764 - - 38.27 7.025 26.95 3.352 1.660 1.067
11 1.204 - - - 53.58 - 3.779 1.903 1.424
13 0.07537 - - 51.81 34.94 36.03 3.908 1.983 1.583
15 0.9309 0.4502 - - 3356 120.6 3.923 1.993 1.606
17 2.263 1.498 0.6914 87.92 15.36 43.03 3.925 1.994 1.610
19 4.112 2.984 1.821 670.5 20.78 40.60 3.925 1.994 1.610
21 6.619 5.050 3.562 145.4 139.8 36.88 3.925 1.994 1.610
23 9.909 7.832 6.161 - 536.2 37.47 3.925 1.994 1.610
25 14.08 11.45 10.01 157.6 42.50 37.69 3.925 1.994 1.610
27 19.23 16.02 16.13 130.8 38.17 39.05 3.925 1.994 1.610
29 25.40 21.62 571.5 42.37 39.45 39.48 3.925 1.994 1.610
31 32.58 28.33 576.2 40.55 39.87 39.68 3.925 1.994 1.610
33 40.62 36.11 511.2 40.17 39.84 39.73 3.925 1.994 1.610
35 49.06 44.74 600.7 40.08 39.83 39.74 3.925 1.994 1.610
37 56.75 53.41 514.5 40.07 39.83 39.75 3.925 1.994 1.610
39 62.01 60.26 505.9 40.06 39.83 39.75 3.925 1.994 1.610
41 64.29 63.73 486.4 40.06 39.83 39.75 3.925 1.994 1.610
43 64.94 64.80 473.5 40.06 39.83 39.75 3.925 1.994 1.610
45 65.09 65.06 66.00 40.06 39.83 39.75 3.925 1.994 1.610
47 65.12° 65.11 65.27 40.06 39.83 39.75 3.925 1.994 1.610
49 65.12 65.12 65.14 40.06 39.83 39.75 3.925 1.994 1.610
51 65.12 65.12 65.12 40.06 39.83 39.75 3.925 1.994 1.610
53 65.12 65.12 65.11 40.06 39.83 39.75 3.925 1.994 1.610
55 65.12 65.12 65.11 40.06 39.83 39.75 3.925 1.994 1.610

# N = total number of polynomial terms used in the power series method.

® The symbol (-) means that no roots were found.

¢ The nondimensional critical buckling moments in bold and underlined indicate the best convergent values in each column with the
smallest N.

normal stresses. The procedure is applied to all possible combinations of clamped, simply supported or free
edge conditions applied continuously along the other unloaded edges. For the case of opposite edges being
simply supported, a variables separable solution exists, which reduces the partial differential equation to an
ordinary one having variable coefficients. This is solved by the classical power series method of Frobenius,
and the convergence of the series is established. Comparisons are also made with results available in the
published literature.

2. Analysis

Consider a rectangular plate of lateral dimensions a x b, as shown in Fig. 1, having its edges x =0 and
x = a simply supported and linearly varying in-plane stresses acting along these two edges, whereas the
other two edges (y = 0 and y = b) may be either clamped (C), simply supported (S), or free (F), and have
no in-plane stresses. Assuming that the plate is thin, has uniform thickness, and that its material is homo-
geneous, isotropic and linearly elastic, the differential equation of motion governing buckling is
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Fig. 3. Nondimensional buckling in-plane loads N, = Nob*/D vs. aspect ratio k = a/b for S-C-S-C plates (all v).

DV* N 62w+ N o*w n o*w (1)
W= Ny<7> XV A A A0
ox2 Toxdy T 0y
where w is transverse displacement; V* is the biharmonic differential operator (i.e., o*jox* + 204/
dx>dy” + 8*/0y* in rectangular co-ordinates); D is the flexural rigidity of the plate defined by
EW’
p=_t" 2
12(1 —v?)’ )
E is Young’s modulus; / is the plate thickness; v is Poisson’s ratio; N, and N, are normal forces per unit
length of plate in the x and y directions, respectively, positive if in fension; and N, is shearing force per
unit length in the xy-plane. The forces (per unit length) are related to the in-plane stresses (o,,0),7.,) by
N,=o0h,N,=0c,h, and N, = 1,,h.
Let us assume N, = N,, =0 and express N, by the linear variation

N, = —No(l _ oz%), (3)
where N is the intensity of compressive force at y = 0, and « is a numerical loading factor. This stress dis-
tribution is applied at the ends of the plate (x = 0, x = @), remains the same within its interior, and satisfies
the plane elasticity equations exactly. By changing o, we can obtain various particular cases. For example,
by taking « = 0 we have the case of uniformly distributed compressive force. When o = 1, the compressive
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Fig. 4. Nondimensional buckling in-plane loads Ny = Nob?/D vs. aspect ratio k = a/b for S-C-S-S plates (all v).

force varies linearly from — Ny at y = 0 to zero at y = b. For o = 2 we obtain the case of pure in-plane bend-
ing. With other o in the range 0 < o <2, we have a combination of bending and compression. Examples of
these cases are shown in Fig. 2. For a <0 or o> 2 the problems arising are identical with ones having
0 <o <2 if the edge conditions at y = 0 and b are considered properly. The governing equation of motion
(1) then reduces to

N *w
ENIEALN ST A R
Vit o (1-ax) =5 =0. ()
Adopting the nondimensional coordinates ¢ = x/a and n = y/b, Eq. (4) becomes
o*w o*w *w  @®N, o*w
— 22—k 1 —an)— =0, 3
o " sgor T o T g ®)

where k = a/b is the plate aspect ratio.
A solution for the displacement w may be taken as:

w(&, ) = Y,,(n) sin(mnf), (6)

where Y, is a function of 7, and m the numbers of half-waves in mode shapes in the x direction. Eq. (6)
satisfies exactly the simply-supported boundary conditions at £ =0 and 1. Substituting Eq. (6) into (5)
yields
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Fig. 5. Nondimensional buckling in-plane loads N = Nob*/D vs. aspect ratio k = a/b for S-C-S-F plates (v =0.3).

Y= 28,77+ (B, — Ny(1 = an) B )Y, =0, (7)

where YV and Y” are the fourth and second derivatives of Y,, with respect to n, respectively, B, is defined
by

5,”;% (m=1,2,3,...), (8)
and N; is the nondimensional compressive force at the edge y = 0, defined by
. N
No=—F- 9)

Eq. (7) is an ordinary differential one in # for each m. The ordinary differential equation has one variable
coefficient in it, but it may be solved exactly by the power series solution method of Frobenius (Wylie,

1951).
Let us assume the deflection function as
Ym(”/) = Z Cuntl"s (10)
n=0

where C,,, is an arbitrary coefficient. Substituting Eq. (10) into Eq. (7), we obtain
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Fig. 6. Nondimensional buckling in-plane loads N, = Nob*/D vs. aspect ratio k = a/b for S-S-S-C plates (all v).

zx:nn—l —2)(n—3)Cpun"™* =282 zoc:nn—l Con"2 + B(B2 — N ZCW,n
n=4 n=2

+ afZN; Z Cont"™ =
n=0

Shifting indices, Eq. (11) becomes

o0

> Kn+4)(n+3)(n+2)(n+1)Coura — 285 (n+2)(n + 1)Coriz + o (B — N*)Cora 31"

n=0
+ oaf2N;Coat™ ] =0
Using the property of identity, for the coefficient of #°,

ﬂ2
ma4 = 24 [4Cm2 (ﬁfn - NS)CWI,O]7

and for the coefficients of #"(n=1,2,3,...)

[2(7[ + 2)(” + I)Cm‘n+2 - (ﬁrzn - N(,;)Cmv" - aNSCm»"*]]ﬁiz
n+4)(n+3)(n+2)(n+1) '

C

Cvm,n+4 =

Egs. (13) and (14) are the recursion relationships for C,,,, when n > 4.

4227
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Fig. 7. Nondimensional buckling in-plane loads N = Nob*/D vs. aspect ratio k = a/b for S-S-S-S plates (all v).

Thus C,, 0, Cin1, Ci2, and C,,, 5 are arbitrary coefficients, which will be used in two boundary conditions
at each side (7 =0 and 1), and the other coefficients C,,,, for n > 4 are expressed in terms of them. Typ-
ically, the four boundary conditions yield four homogeneous equations with unknowns C,, o, C,..1, Cy.2,
and C,, 3. To obtain a non-trivial solution of the system, the determinant of the matrix of the coefficients
is set to zero for the nondimensional buckling loads (V). One sees that the elements of the matrix have
infinite series in them. Substituting each N back into the four homogeneous equations yields the corre-
sponding eigenvectors, C,, ,/C,.0 (With n = 1,2,3), which determines the mode shape.

There are three physically meaningful, simple types of boundary conditions along the edges # = 0 and
n =1 for which this solution may be used:

0
Clamped : w = 0 and a—W:0=>Ym:Yin:0 (15a)
v
Simply supported : w=0and M, =0=7Y, =Y =0 (15b)
Free:M,=0and V,=0= Y/ =YY" +m*nr*(2 - )Y, =0 (15¢)

where M, =0 and V, = 0 are bending moment and effective shear force per unit distance on the y-plane,
respectively. Substituting Eq. (10) into one of the sets of boundary condition (15) for each of the two edges,
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Fig. 8. Nondimensional buckling in-plane loads N = Nob*/D vs. aspect ratio k = a/b for S-S-S-F plates (v = 0.3).

n =0 and 5 = 1, yields the fourth order characteristic determinant described earlier from which an infinite
set of eigenvalues (nondimensional buckling loads, N;) may be found for each longitudinal half-wave num-
ber (m). The lowest value among all these N; corresponds to the nondimensional critical buckling load N¢,.
In certain special cases, the determinant quickly reduces to a lower order one.

3. Convergence

The exact solution functions given by Eq. (10) require summing an infinite series. Depending upon the
degree of accuracy which one wants to have in numerical calculations, the upper limit of the summation is
truncated at a finite number (N), which may be as large as needed. This procedure is no different than that
followed in the evaluation of other transcendental functions arising in the exact solutions of other boundary
value problems (e.g., trigonometric, hyperbolic, Bessel, Hankel).

To examine the convergence rate of the power series of Eq. (10), as well as to establish the correctness of
the results, the present equations are applied to the buckling problems of plates with aspect ratio (a/b) of
2.3, for all nine possible, but distinct, combinations of the boundary conditions described by Egs. (15), and
the convergence studies are exhibited in Table 1 for the nondimensional critical buckling moments
M (= N;../6) for o =2 and v = 0.3. The free, simply supported, and clamped edge conditions are abbre-
viated to F, S, and C, respectively in Table 1.
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Fig. 9. Nondimensional buckling in-plane loads Ny = Nob*/D vs. aspect ratio k = a/b for S-F-S-C plates (v = 0.3).

Table 1 shows that the S-F-S-C plate (see Fig. 1) has a much lower critical moment (M, = 3.925) than
that of the S-C-S-F plate (M}, = 65.11). This is because in the former case the compression part of the plate
is in the vicinity of the free edge (y = 0), whereas in the latter the buckling is resisted by the fixed edge
(» =0). One also observes in Table 1 that the critical buckling mode shape of the S-F-S-C plate has only
one half-wave (m = 1) in the loaded (x) direction, whereas the S-C-S-F plate has five. It is seen that more
terms of the power series are needed to represent the plate deformations properly for four-digit convergence
when more half-waves are in the mode shape.

It is interesting to note that the convergence is not monotonic. That is, the eigenvalues (N;) oscillate
about the exact values as N is increased, rather than approaching them from one direction. The underlined
numbers in the table are those beyond which the fourth digit does not change as N increases. As more terms
are taken the buckling loads converge to their exact values. Data is not given in Table 1 for certain small
numbers of terms because of the difficulty of the computer in establishing the roots of the characteristic
determinant in these cases.

The numerical results from the power series approach which will be presented in Section 4 were obtained
by taking sufficient terms (N) to converge to the number of digits shown in the tables. Typically, this was
N =50.

Additional convergence studies for the S-F-S-F plates (Kang and Leissa, 2001) with « = 2 (pure end mo-
ments) and S-C-S-C plates (Leissa and Kang, 2002) with « = 0, 1, 2, and having various aspect ratios (a/b)
are also available.
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Fig. 10. Nondimensional buckling in-plane loads Nj = Nob*/D vs. aspect ratio k = a/b for S-F-S-S plates (v = 0.3).

4. Buckling loads and mode shapes

It is interesting to observe how the critical buckling load varies as o changes for each boundary condi-
tion. Examples of this are shown in Figs. 3—-11, where N = N ob? /D are plotted versus for the linearly vary-
ing edge loadings exhibited in Fig. 2 (x =0, 0.5, 1, 1.5, 2), for plates having all nine possible combinations
of clamped (C), simply supported (S) or free (F) edges at y = 0 and b; S-C-S-C, S-C-S-S, S-C-S-F, S-S-S-C,
S-S-S-S, S-S-S-F, S-F-S-C, S-F-S-S, and S-F-S-F plates, respectively. These figures show the fact that the
critical mode shape has an increasing number (m) of longitudinal half waves as the length-to-width ratio (a/
b) increases. The critical modes all have only one partial wave in the y-direction.

As one increases o the buckling load parameter Nob*/D is seen to increase, as expected, because for a
fixed N, the longitudinal force (i.e., the integral of ¢, over the plate width) decreases. Not only do the
curves shift upward with increasing o, but the number of longitudinal half-waves increases with two excep-
tions of S-F-S-S (in Fig. 10) and S-F-S-F (Fig. 11); for example, with a/b = 2.8 the critical mode shape
changes from m =2 for « =0, 0.5,1, to m =4 for « = 1.5, to m =6 for o« =2 for S-C-S-F (in Fig. 5). It
is interesting to note from Fig. 10 that considering the results of Nj = Nob*/D for, a/b > 3 the critical buck-

ling modes for S-F-S-S plates always have m = 1 irrespective of « and a/b, like the S-F-S-F plates in Fig. 11
(Kang and Leissa, 2001).

It is observed in Figs. 3-5 that the buckling curves of N = Nob*/D are almost identical for o = 2 (in-
plane moments) if the compression side of the plate is clamped (S-C-S-C, S-C-S-S, S-C-S-F), no matter
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Fig. 11. Nondimensional buckling in-plane loads N, = Nob*/D vs. aspect ratio k = a/b for S-F-S-F plates (v = 0.3).

whether the other edge (y = b) is restrained or not. This was also seen in Table 1 where the convergent val-
ues of M = 65.12 or 65.11 are almost identical (for the particular aspect ratio, a/b, of 2.3). This can be
partially explained physically as the tensile stress in one half (5/2 < y < b) stabilizes the plate while the com-
pressive stress in 0 < y < b/2 destabilizes it, with both effects virtually negating each other if the compres-
sion edge is clamped. Accordingly, one sees slight differences among the curves of Figs. 3-5 for o = 1.5,
when only a small part of the plate is in tension (Fig. 2). When the compression edge (y = 0) is only simply
supported, losing the slope constraint, slight differences can be seen in the curves for « = 2 in Figs. 6-8. And
the convergent values in Table 1 for the three cases are more distinct (40.06, 39.83, 39.75). For the remain-
ing three cases (S-F-S-C, S-F-S-S, S-F-S-F) the compressive edge is free, and considerable differences are
seen among the curves for o = 2 in Figs. 9-11.

Table 2
Minimum buckling loads Ny = Noyb? /D for edge conditions not directly affected by v
Edge conditions o

0 0.5 1 1.5 2
S-C-S-C 68.80 91.43 133.7 2243 390.4
S-C-S-S 53.39 73.64 115.8 218.5 390.4
S-S-sS-C 53.39 68.48 94.18 143.2 236.3

S-8-S-S 39.48 52.49 77.08 132 235.7




J.-H. Kang, A.W. Leissa | International Journal of Solids and Structures 42 (2005) 42204238 4233

Table 3
Minimum buckling loads N = Nob*/D for edge conditions directly affected by v
Edge conditions v o
0 0.5 1 1.5 2
S-C-S-F 0 15.09 24.69 64.24 217.6 390.3
0.3 12.64 20.91 58.59 218.0 390.3
0.5 10.40 17.35 50.49 218.2 390.3
S-S-S-F 0 6.000 9.600 24.00 127.3 235.5
0.3 4.200 6.700 16.80 128.6 2354
0.5 3.000 4.800 12.00 129.3 2353
S-F-S-C 0 15.09 16.94 19.26 22.24 26.15
0.3 12.64 14.08 15.88 18.16 21.10
0.5 10.40 11.53 12.93 14.68 16.93
S-F-S-S 0 6.000 6.857 8.000 9.600 12.00
0.3 4.200 4.800 5.600 6.720 8.400
0.5 3.000 3.429 4.000 4.800 6.000
Table 4
Critical buckling loads N}, = Nob*"/D for S-F-S-F plates
alb v o
0 0.5 1 1.5 2
0.5 0 39.48 49.68 59.17 68.28 71.76
0.3 38.42 47.62 55.26 62.43 69.78
0.5 35.66 43.23 48.77 53.97 59.33
1 0 9.870 12.95 17.56 23.54 30.31
0.3 9.399 12.27 16.21 20.79 25.73
0.5 8.352 10.84 13.98 17.35 20.89
2 0 2.467 3.277 4.774 7911 13.82
0.3 2.292 3.040 4.389 6.990 11.26
0.5 1.949 2.583 3.702 5.738 8.816
5 0 0.3948 0.5261 0.7853 1.508 5.365
0.3 0.3608 0.4807 0.7165 1.360 4.296
0.5 0.2992 0.3986 0.5935 1.118 3.309
10 0 0.09870 0.1316 0.1971 0.3900 2.670
0.3 0.08991 0.1199 0.1795 0.3541 2.133
0.5 0.07422 0.09894 0.1481 0.2916 1.638

Tables 2 and 3 present the minimum buckling loads N; = Nyb*/D over the entire spectrum of a/b for
edge conditions not directly affected by v such as S-C-S-C, S-C-S-S, S-S-S-C, S-S-S-S plates, and for ones
directly affected by v such as S-C-S-F, S-S-S-F, S-F-S-C, S-F-S-S plates for v=10,0.3,0.5, respectively.
These minimum values are the most important values of the spectrum because if the loading does not
exceed the minimum buckling load, then the plate cannot buckle, regardless of a/b. It is noted that the
minimum results for S-F-S-F are omitted in Table 3 because the S-F-S-F plate has minimum of zero at
alb = co.

The case of the S-F-S-F plate is a particularly important one. Table 4 displays critical buckling loads for
Ny, = Noorb? /D such plates having various a/b=0.5, 1, 2, 5, 10, a variety of linearly varying loadings
(x=0,0.5,1, 1.5, 2, as in Fig. 2), and the full range of possible Poisson’s ratios for an isotropic material
(v=0, 0.3, 0.5). For & = 0 (uniform loading) and v = 0, one observes that the critical buckling load is ex-
actly that of an Euler column 7°/(a/b)?; that is, for v = 0, there is no transverse (y) curvature in the mode
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Table 5
Comparison of nondimensional buckling moments M* = M/D of S-S-S-C plates with in-plane moments (x = 2) for m =1

Method alb

0.4 0.5 0.6 0.65 0.66 0.67 0.7 0.8 0.9 1.0
Nolke 48.5 42.8 40.55 40.27 40.27 40.27 40.38 41.57 43.69 46.62
Power series 47.87 42.00 39.72 39.40 39.38 39.38 39.47 40.56 42.64 45.51

shape. Nonzero v induces transverse curvature (i.e., anticlastic bending). It would appear from Table 4 that
increasing v causes decreased No.,, but that is not the case, for D = Eh*/12(1—v?) depends upon v. A proper
comparison of load parameters (12No.b*/Eh*) shows with a/b = 1 and « = 0, for example, that the param-
eter 12No.,b*/ER® increases from 9.870 to 11.14 by 12.8 percent as v increases from 0 to 0.5.

Table 5 compares the nondimensional buckling moments M*(= M /D = N;/6) of S-S-S-C plates with
pure in-plane moments (o = 2) for m = 1 obtained by Nolke (1937) using an energy method. In all cases,
Nolke’s results are larger (but within 2.5%) than the exact ones from the present power series method. Table
6 compares nondimensional critical buckling loads Ny, of S-S-S-S plates having various loading conditions
(« =2, 4/3, 1, 4/5, 2/3) obtained by Timoshenko (1921, 1934) using an energy method with those found
with the present, exact power series solution. In most cases the three or two digit results obtained by
Timoshenko agree with the exact results up to three or two significant figures with some exceptions, in par-
ticular for o = 2/3, where there are large disagreements. Table 7 also compares M, of S-S-S-S plates with
pure in-plane moment (o = 2) obtained approximately by Stein (1934) and Chwalla (1940) with the exact
results. Ban (1935) obtained the critical buckling loads for S-F-S-S and S-S-S-F plates for o = 1, but com-
parisons are not made due to his highly inaccurate results, which will not be repeated here. Additional com-
parisons for the S-F-S-F plates (Kang and Leissa, 2001) with o = 2 (pure end moments) and S-C-S-C plates
(Leissa and Kang, 2002) with «=0,1,2, and having various aspect ratios (a/b) have already made
elsewhere.

The buckling loads displayed in Tables 6 and 7 are critical values. That is, they are the lowest ones of the
doubly infinite set of buckling eigenvalues that arise for each o and a/b. For example, when « = 1 in Table

Table 6
Comparison of nondimensional critical buckling loads Nj,, = No:b*/D of S-S-S-S rectangular plates with linearly varying in-plane
loading applied to each of the simply supported ends acting in the plane of the plate

o Method alb
0.4 0.5 0.6 0.667 0.75 0.8 0.9 1.0 1.5
2 Timoshenko 287 253 238 236 238 241 253 253 238
Power series 287.2 252.0 238.1 235.7 238.0 241.5 252.4 252.0 238.0
(m=1) (m=1) (m=1) m=1) (m=1) (m=1) (m=1) (m=2) (m=2)
4/3 Timoshenko 185 - 127 - 114 111 - 109 114
Power series 186.3 148.5 128.1 119.8 113.3 110.9 108.5 108.7 113.3
(m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=2)
1 Timoshenko 149 - 96 - 83 80 - 77 83
Power series 149.5 114.7 96.16 88.60 82.59 80.26 77.66 77.10 82.59
(m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=1) m=1) (m=2)
4/5 Timoshenko 131 - 82 - 70 68 - 65 70
Power series 113.4 99.3 82.44 75.62 70.20 68.09 65.70 65.09 70.20
(m=1) (m=1) m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=2)
2/3 Timoshenko 107 70 60 59 57 60

Power series  120.8 90.69 74.98 68.66 63.64 61.68 59.45 58.86 63.64
(m=1) (m=1) (m=1) (m=1) (m=1) (@m=1) (m=1) m=1) (m=2
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Table 7
Comparison of nondimensional critical buckling moments M}, = M., /D of S-S-S-S rectangular plates for o =2

Method alb

0.3 0.4 0.5 0.6 0.67 0.8 0.9 1.0 1.2 1.5

(m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=1) (m=2) (m=2) (m=2)
Stein 61.5 47.9 41.9 39.6 393 40.1 42.1 41.9 39.6 39.6
Chwalla 61.6 47.6 41.9 39.7 393 39.3 39.3 393 39.3 393
Power series 61.61 47.87 41.99 39.68 39.28 40.25 42.07 41.99 39.68 39.66

6, for a/b <1 the critical mode shape has a single half-wave in the x-direction (m = 1), and for 1.4 <
a/b <2.4 the mode has m =2. The nondimensional critical buckling loads N;, of S-S-S-S plates for
o =1 are also seen in the middle curve appearing in Fig. 7.

The critical loads listed in Table 6 are only for the range of plate aspect ratio 0.4 < a/b < 1.5. However,
it should be noted that these are the values also for aspect ratios mi(a/b), where m =1,2,3,.... Thus for
example, N, = 77.66 for o = 1 is the critical load for a/b = 0.9, 1.8, 2.7, 3.6, etc. This is seen, not only from
the mathematical solution for the eigenvalues, but also by considering the mode shape described by Eq. (6).
The function sin(mn¢) is periodic in £. Considering, for example, m = 3, the simply supported edge condi-
tions at ¢ =0 and 1 are duplicated at the node lines which appear in the mode shape at ¢ = 1/3 and 2/3. It
should also be noted that, for example, N; = 149.5 for o = 1 is not only the critical load for a/b = 0.4; it is
also is a buckling load for a/b = 0.8(m = 2), a/b = 1.2(m = 3), etc. However, it is not the critical load for the
latter a/b.

Contour plots (lines of constant displacement) of the critical buckling mode shapes are displayed in
Figs. 12, 13 for plates having a/b = 2.3 and 1, respectively, for o« =2 and v = 0.3. In the figures, the critical
mode shapes having an odd number of longitudinal half-waves (m = 1,3,5) are symmetric about the mid-
axis x = a/2, while those having an even number (m = 2,4) are anti-symmetric. When m is equal or more
than two, any part of the mode shapes divided by the vertical lines of zero displacements bulges out while
the adjacent part(s) bulge(s) in. Fig. 12 shows clearly that the critical mode shape can change from m =1 to
3 to 4 to 5 as the boundary conditions become increasing restrained. Additional contour plots of critical
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Fig. 12. Critical buckling mode shapes of rectangular plate loaded at two opposite ends simply-supported by in-plane moments (« = 2)
for a/b=2.3 and v=0.3.
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Fig. 13. Critical buckling mode shapes of rectangular plate loaded at two opposite ends simply-supported by in-plane moments (« = 2)
for a/b=1 and v=10.3.

buckling mode shapes for the S-F-S-F plates (Kang and Leissa, 2001) for o = 2 (pure end moments) and S-
C-S-C plates (Leissa and Kang, 2002) for « = 0, 1,2 having various aspect ratios (a/b) are also available
elsewhere.

5. Conclusions

The foregoing work has shown how an exact solution procedure may be followed to obtain a variety of
interesting and useful results for buckling loads and some of their corresponding mode shapes of rectangu-
lar plates having two opposite edges simply supported, with those edges being subjected to linearly varying
in-plane stresses. The procedure was applied to all possible combinations of clamped, simply supported or
free edge conditions applied continuously along the other unloaded edges at y = 0 and b. Additional, exten-
sive results for the S-F-S-F plates (Kang and Leissa, 2001) having end moments only (¢ = 2) and S-C-S-C
plates (Leissa and Kang, 2002) for « =0, 1,2 are also available elsewhere.

Assuming a sinusoidal displacement (w) in the x-direction resulted in a separation of variables (x and y),
yielding an ordinary differential equation in y which had variable coefficients. An exact solution of this was
obtained in terms of an infinite power series (i.e., the method of Frobenius). The infinite series are transcen-
dental functions, similar to others commonly encountered in structural mechanics (e.g., trigonometric,
hyperbolic, Bessel, Hankel) which are also evaluated as power series, except that present ones no ‘“‘name”
assigned to them.

As demonstrated by the results shown in Table 1, extreme care must be taken to use enough terms in the
series to obtain accurate numerical results. Otherwise, very poor results may be obtained, even though as
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many as 31 terms are used for some plates (e.g., S-C-S-C, S-C-S-S, S-C-S-F). This, of course, is a consid-
eration when evaluating any functions expressed as power series. Also notable is the relatively wild char-
acter of the convergence. It is not monotonic, but oscillatory. Moreover, the oscillation amplitude does
not necessarily decrease as terms as added. Most astonishingly, solutions could not even be established
numerically for small numbers of terms because of the extreme oscillation then present. However, as Table
1 shows, as sufficient terms of the polynomials are used, the buckling loads converge correctly, and exactly.

Besides the clamped, simply supported or free edge conditions along the edges y = 0 and b, these edges
could also be restrained elastically (but uniformly) by adjacent support structure, in both transverse dis-
placement and/or rotation, and the solution procedure would proceed straightforwardly.

If the in-plane edge loading were more general than linearly varying (i.e., N, = f()), then the exact pro-
cedure shown here could not be used. One would first have to solve a plane elasticity problem to determine
N,, N,, and N, within the plate as functions of x and y. However, the variables separable solution assumed
for w in Eq. (6) would not satisfy Eq. (1) for these N, N, and N,,.

On the other hand, a more general solution than that shown here could be obtained by the present
method if uniform in-plane loading were applied to the edges y = 0 and b (i.e., N, = constant), in addition
to the linearly varying of Eq. (3). After utilizing (6), the governing ordinary differential equation (7) would
have one extra term in Y”, but it could be solved exactly by assuming (10), and then following the procedure
in the present work subsequent to (10).
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